On the absence of the Efimov-effect for $N \ge 4$ particles

<u>Simon Barth^{1,*}</u>, Andreas Bitter¹, Semjon Vugalter²

¹Institute of Analysis, Dynamics and Modelling; University of Stuttgart; Germany

²Institute for Analysis; Institute of Technology Karlsruhe; Germany

*Email: simon.barth@mathematik.uni-stuttgart.de

According to the well-known Efimov-effect the resonance at the lower threshold of a twobody system turns into infinitely many bound states when adding a third particle. This comes from the behaviour of the resonance function for $|x| \to \infty$.

Based on the talk of A. Bitter we prove the absence of the Efimov-effect for $N \ge 4$ particles in dimension d = 3 and for $N \ge 4$ fermions in dimension d = 2. Precisely, we show that the discrete spectrum of the corresponding N-body Schrödinger operator H is finite, provided every subsystem with $n \le N - 2$ particles has no negative spectrum and no virtual level.