On the virtual level of N-body Schrödinger operators

<u>Andreas Bitter^{1,*}</u>, Simon Barth¹, Semjon Vugalter²

¹Institute of Analysis, Dynamics and Modeling (IADM), 70569 Stuttgart, Germany ²Institute for Analysis, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany *Email: andreas.bitter@mathematik.uni-stuttgart.de

In this talk we study the behaviour of the resonance functions of the Schrödinger operator

$$H = -\Delta + V$$

in the case of a virtual level at the threshold of the essential spectrum. Based on an Agmontype argument a new approach is presented to derive rates of decay of the resonance functions for $|x| \to \infty$. This technique is applied to multi-particle systems to analyse virtual levels of *N*body Schrödinger operators. As a consequence, one can show that the Efimov-effect is absent in the case of $N \ge 4$ particles in dimensions $d \ge 3$ or for $N \ge 4$ fermions in dimension d = 1and d = 2.