Potential approximation of the one-dimensional Bose gas with contact interactions

<u>Michael Hofacker^{1,*}</u>, Marcel Griesemer¹, Ulrich Linden²

¹Institut für Analysis, Dynamik und Modellierung (IADM), Universität Stuttgart ²Continental AG, Frankfurt a. M. *Email: hofackml@mathematik.uni-stuttgart.de

In this talk a Bose gas with δ -interactions in one space dimension is considered. We prove that the Hamiltonian of this system, which is defined by a closed semi-bounded quadratic form, naturally arises as a resolvent limit $\varepsilon \downarrow 0$ of Schrödinger operators H_{ε} , where the corresponding two-body potentials scale like a Dirac sequence in $\varepsilon > 0$. Moreover, we estimate the rate of norm convergence of the resolvents depending on the decay of the potential at infinity. Our results extend previous results (see [1]), concerning the three-body case, to the case of an arbitrary number of bosons $N \in \mathbb{N}$.

References

[1] G. Basti, C. Cacciapuoti, D. Finco, A. Teta. The three-body problem in dimension one: From short-range to contact interactions. J. Math. Phys. 59, 072104 (2018).