Lorentzian warped products with one dimensional base and length space fibers

Stephanie B. Alexander1, Melanie Graf2,*, Michael Kunzinger3, Clemens S"amann3

1Department of Mathematics, University of Illinois at Urbana-Champaign, USA
2Department of Mathematics, University of T"ubingen, Germany
3Faculty of Mathematics, University of Vienna, Austria
*Email: graf@math.uni-tuebingen.de

Smooth Lorentzian warped products of the form $I \times f (M, g)$, where (M, g) is a Riemannian manifold and f is a positive smooth function on an interval I, are important examples of spacetimes: They contain well-known physical models (such as the FLRW spacetimes) and admit a very simple description of causal curves and geodesics.

We will examine what happens if one replaces the Riemannian manifold (M, g) with a locally compact length space (X, d). As long as f is continuous and positive there still exists a natural notion of causal curves and their length and hence also of the causality relations on the product $I \times f X$. This turns $I \times f X$ into a Lorentzian length space (as defined in \cite{1}). Analogous to the smooth case the causal structure of such warped products is very simple and one has an explicit description of $\partial J^+(p)$. Inspired by the well-developed Riemannian theory of warped products of length spaces, we also obtain some results concerning timelike curvature bounds for Lorentzian warped products of this type.

References