A uniqueness result for higher-dimensional Reissner–Nordström manifolds

Sophia Jahns¹,*

¹University of Tübingen, Germany
*Email: jahns@math.uni-tuebingen.de

We consider $n+1$-dimensional static solutions of the electrovacuum equations which are asymptotic to a member of the Reissner–Nordström family, with a lapse and an electric potential fulfilling some asymptotic conditions. Assuming that we are given such a spacetime whose inner boundary (a priori possibly with multiple connected components) consists of static horizons or photon spheres (which are characterized by a quasilocal subextremality condition), we show that it is isometric to a subextremal Reissner–Nordström spacetime of positive mass [3]. The proof relies on ideas going back to the well-known black hole uniqueness theorem by Bunting and Masood-ul Alam [1] and generalizes classical black hole uniqueness results, as well as recent photon sphere uniqueness theorems (e.g. [2]).

References

