Dörfler marking with minimal cardinality is a linear complexity problem

<u>Carl-Martin Pfeiler^{1,*}</u>, Dirk Praetorius¹

¹TU Wien, Institute for Analysis and Scientific Computing, Vienna, Austria *Email: carl-martin.pfeiler@asc.tuwien.ac.at

In his seminal work [1], Dörfler proposes a marking criterion, which allows to prove linear convergence of the usual adaptive finite element algorithm. Given refinement indicators $\eta(T)$ for all elements $T \in \mathcal{T}$ of a triangulation \mathcal{T} and a marking parameter $0 < \theta \leq 1$, a set $\mathcal{M} \subseteq \mathcal{T}$ satisfies the *Dörfler marking* criterion, if

$$\theta \sum_{T \in \mathcal{T}} \eta(T)^2 \le \sum_{T \in \mathcal{M}} \eta(T)^2 \,.$$

Later it was shown in [2] that the Dörfler marking criterion is not only sufficient to prove linear convergence, but even in some sense necessary. In the literature, different algorithms have been proposed to construct \mathcal{M} , where usually two goals compete: On the one hand, \mathcal{M} should contain a minimal number of elements. On the other hand, one aims for linear costs with respect to the cardinality of \mathcal{T} . Unlike expected in the literature [2], we formulate and analyze an algorithm, which constructs a minimal set \mathcal{M} at linear costs. In particular, Dörfler marking with minimal cardinality is a linear complexity problem.

References

- [1] W. Dörfler, SIAM Journal on Numerical Analysis 33(3) (1996), pp. 1106–1124.
- [2] R. Stevenson, Foundations of Computational Mathematics 7(2) (2007), pp. 245–269.