Edge-Unfolding Nearly Flat Prismatoids

Manuel Radons ${ }^{1, *}$

${ }^{1}$ Workgroup Discrete Mathematics / Geometry at TU Berlin, Berlin, Germany
*Email: radons@math.tu-berlin.de
A 3-Prismatoid P is the convex hull of two convex polygons A, B which lie in parallel planes $H, H^{\prime} \subset \mathbb{R}^{3}$, respectively. Let A^{\prime} be the orthogonal projection of A onto H^{\prime}. Extending techniques introduced by Joseph O'Rourke [1], we show that P can be edge-unfolded if the boundaries of A^{\prime} and B intersect in at most two points and P is sufficiently flat, that is, if the distance between H and H^{\prime} is sufficiently small. Both conditions can be relaxed by imposing structural constraints on A and B.

References

[1] J. O'Rourke, Edge-Unfolding Nearly Flat Convex Caps, 34th International Symposium on Computational Geometry (SoCG 2018), pp. 64:1-64:14.

