Standing and moving breather solutions for a quasilinear wave equation

Wolfgang Reichel^{1,*}, Gabriele Bruell¹, Simon Kohler¹

¹Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany *Email: wolfgang.reichel@kit.edu

For the quasilinear wave equation

$$g(x)\partial_t^2 u - \Delta u + \Gamma(x)\partial_t((\partial_t u)^3) = 0$$

with $(x,t) \in \mathbb{R}^{n+1}$ we are proving the existence of standing (n = 1) and moving (n = 2) breather solutions, i.e., solutions which are localized in space and periodic in time.

Under appropriate conditions on g and Γ we examine standing breathers via variational methods and moving breathers via bifurcation theory. Some of our analytical results are complemented by numerical simulations.