Standing and moving breather solutions for a quasilinear wave equation

Wolfgang Reichel ${ }^{1, *}$, Gabriele Bruell ${ }^{1}$, Simon Kohler ${ }^{1}$

${ }^{1}$ Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
*Email: wolfgang.reichel@kit.edu
For the quasilinear wave equation

$$
g(x) \partial_{t}^{2} u-\Delta u+\Gamma(x) \partial_{t}\left(\left(\partial_{t} u\right)^{3}\right)=0
$$

with $(x, t) \in \mathbb{R}^{n+1}$ we are proving the existence of standing $(n=1)$ and moving ($n=2$) breather solutions, i.e., solutions which are localized in space and periodic in time.

Under appropriate conditions on g and Γ we examine standing breathers via variational methods and moving breathers via bifurcation theory. Some of our analytical results are complemented by numerical simulations.

