Donsker results for the smoothed empirical process

Eric Beutner¹, Henryk Zähle^{2,*}

¹Department of Quantitative Economics, Maastricht University, Maastricht, The Netherlands ²Department of Mathematics, Saarland University, Saarbrücken, Germany *Email: zaehle@math.uni-sb.de

The empirical probability measure $\hat{\mu}_n$ of identically distributed real-valued random variables X_1, \ldots, X_n with distribution μ is the random measure that uniformly allocates total mass one to the random atoms X_1, \ldots, X_n . The corresponding empirical process with index set \mathcal{G} consisting of measurable functions is given by

$$\sqrt{n} \Big(\int g \, d\widehat{\mu}_n(\omega) - \int g \, d\mu \Big), \qquad g \in \mathcal{G}, \, \omega \in \Omega$$

and plays a central role in the field of nonparametric statistics. Under suitable conditions this process converges in distribution to a non-degenerate limit process as $n \to \infty$, and much is already known about it.

The smoothed empirical process is defined analogously where $\hat{\mu}_n$ is replaced by a smoothed version based on a kernel density estimator. In this talk I present new results on convergence in distribution of the smoothed empirical process for large index sets \mathcal{G} under weak assumptions. The results cover both a MISE optimal choice of the bandwidth and short-range dependence of X_1, \ldots, X_n (X_{n+1}, \ldots) . The results continue to hold under long-range dependence when \sqrt{n} is replaced by a suitable "non-central" rate.